Langages Formels & Automates

J. Bond

bureau 433, bond@essi.fr, 2 0492965141

Les enseignants		
Groupe	Enseignant	e-mail
1	M. Marc Gaetano	gaetano@essi.fr
2	J. Bond	bond@essi.fr
3	J. Bond	bond@essi.fr
4	M. Michel Cosnard	Michel.Cosnard@sophia.inria.fr
5	M. Michel Cosnard	Michel.Cosnard@sophia.inria.fr

Bibliographie

 Danièle BEAUQUIER, Jean BERSTEL et Philippe CHRETIENNE: Eléments d'algorithmique, Masson 1992

(ce livre est épuisé, mais téléchargeable sur le Web à l'adresse http://www-igm.univ-mlv.fr/~berstel/Elements/Elements.html)

Il comporte plusieurs chapitres qui peuvent (doivent ?) vous intéresser à différents titres (cours d'algorithmique, maths discrètes, ...) et le chapitre 9 qui concerne les automates.

Bibliographie

 John HOPCROFT, Jeffrey ULLMAN: Introduction to Automata Theory and Computation, Addison Wesley, 1979.

Nouvelle édition, revue et corrigée :

 John HOPCROFT, Rajeev MOTWANI, Jeffrey ULLMAN: Introduction to Automata Theory, Languages and Computation, Addison Wesley, 2001.

Bibliographie

- Michael SIPSER: Introduction to the Theory of Computation, PWS publishing comp. 1997.
- Jacques STERN : Fondements mathématiques de l'informatique, McGraw Hill, 1990.
- Pierre WOLPER: Introduction à la calculabilité, Inter Éditions 1991 (deuxième édition: Dunod, 2001).

Plan du cours

- Concepts de base (langages rationnels)
- Automates finis
 - Déterministes
 - Non-déterministes
- Théorème de Kleene (rationnel ⇔ reconnu)
- Grammaires
- Automates à pile

Construire/ Engendrer

- Comment engendrer une suite de symboles?
- Système qui engendre tous les mots d'un langage (et seulement ceux-ci)

Cours de mathématiques discrètes: définitions inductives. P.e. sur Σ ={0,1}, MBP: $0 \in L$ $m \in L \Rightarrow m \in L$

Difficile pour certains langages p.e. langue naturelle

Reconnaître

- Mécaniquement
- Par quels outils?
- Automate

Pourquoi?

Les automates sont partout:

- Dans les machines à café pour compter les pièces
- Dans les téléphones cellulaires (pour le décodage des messages)
- Dans les ordinateurs (les compilateurs ne sont que des automates améliorés)
- Dans votre machine à laver (pour le choix du programme)
- Pour interpréter vos pages html (c'est ce que sont en train de faire les ESSI2 en compilation)

Reconnaître

- Mécaniquement
- Par quels outils?
- Automate
- Quelles propriétés pour reconnaître facilement?

Utilité des langages formels

- Spécification de langages de programmation
- Compilation
- Recherche des motifs dans
 - Un texte
 - Une bases de données
 - Sur le Web
- Preuves de programmes
- Codage pour la transmission
- Décodage du génome
- Compression de textes....

Utilisation dans la théorie

- Pour coder des problèmes
 - Un mot = une instance d'un problème
 - Un langage = codage d'un problème
 - Calculabilité :

où se situent les limites de l'informatique

Complexité :

où est la frontière entre ce qui est efficace et ce qui ne l'est pas

Symbole et alphabet

- Entité de base : le symbole pas plus de définition formelle qu'un point en géométrie
- Alphabet = ensemble FINI de symboles

```
\Sigma = \{0,1\}

\Sigma = \{0,1,2\}

\Sigma = \{a,b,...,z\}

\Sigma = \{0,...,9\}
```

 Σ ={public, class, static, void, main, if, for,...}

Mots finis et langage

• Mot = suite finie de symboles 011010 jaimeleslangages

jaimeleslangages
class HelloWorldApp{
 public static void main(String[] args){
 System.out.println(« Bonjour »);
 }

Langage = ensemble de mots (infini?)
 langage des entiers binaires
 langage des programmes java

Concepts de base

Longueur d'un mot:

- Nombre de symboles de la suite
- Notation | w

|011010| = 6 |langage|=7

- Mot de longueur nulle: le mot vide noté ϵ
- *i* ème symbole d'un mot:
 - Fonction rendant le $i^{\text{ème}}$ symbole d'un mot m = langage m (1) = 1, m (2)= a = m (5) m: $\{1,...,|m|\} \rightarrow \Sigma$

Concepts de base

• Occurrence : apparition de $I \in \Sigma$ dans m s'il existe

$$i + q. m(i) = I.$$

 Nombre d'occurrences : fonction qui renvoie le nombre de fois ou une lettre / apparaît dans le mot m.

|langage|a= 2

Concaténation

- Σ^* = collection de tous les mots finis sur Σ = ensemble de tous les mots finis
- Opération interne associée : concaténation "."

$$\Sigma^* \times \Sigma^* \to \Sigma^*$$
 $(u,v) \to u.v$
 $u = ES, v = SI, u.v = ESSI$

- Élément neutre: mot vide $m.\epsilon = \epsilon.m = m$
- concaténation = opération associative :

$$(u.v).w = u.(v.w)$$

• $(\Sigma^*,.)$ est un monoïde

Monoide

de Wikipédia :

- Un monoïde est une structure algébrique consistant en un ensemble muni d'une loi de composition interne associative et d'un élément neutre.
- En d'autres termes, (E, *) est un monoïde si :
 - $\forall x,y \in E, x^*y \in E$ (composition interne)
 - $\forall x,y,z \in E, x^*(y^*z) = (x^*y)^*z$ (associativité)
 - \exists e \in E t.q. : \forall x \in E, x*e=e*x=x

Autre vision des langages

- Langage = ensemble de mots (infini?)
- Langage = sous-ensemble de Σ^* ensemble des nombres ordinaires

ensemble des programmes Java (syntaxiquement corrects)

- Langage vide $L = \{\} = \emptyset \neq \{\epsilon\}$
- $L = \{\varepsilon\}$, langage du mot vide
- Langage fini de mots finis

L={ab,ba,aca}

Langage infini dénombrable de mots finis
 L={mots binaires pairs}

Préfixe

 Un mot p de longueur / est un préfixe d'un mot m de longueur n si

 $\forall i \leq l, p(i) = m(i)$

• si / < n, le préfixe est propre

Opérations sur les mots

Opérations sur les mots

• p préfixe de m s'il existe un mot u t.q. p u = m

p u

Suffixe

 Un mot s de longueur / est un suffixe de m de longueur n si

$$\forall i \leq l, \, s(n-l+i) = m(n-l+i)$$

• si /<n, le suffixe est propre

Opérations sur les mots

Opérations sur les mots

■ s est un suffixe de m s'il existe u t.q. u s = m

Facteur

- \blacksquare Un mot u est un facteur d'un mot v si
 - \blacksquare u est un suffixe d'un préfixe de v.
 - \blacksquare u est un préfixe d'un suffixe de v.
- u est un facteur de v ssi $\exists x,y \in \Sigma^*$ t.q. xuv=v

x u y

Facteur

lacktriangle Un mot u est un facteur d'un mot m si

- u est un suffixe d'un préfixe de m.
- \blacksquare *u* est un préfixe d'un suffixe de *m*.
- u est un facteur de v ssi $\exists x,y \in \Sigma^*$ t.q. xuy=m

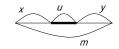


Image miroir

Appelé aussi inverse de m, notée m⁻¹
 m = sophia

m⁻¹=aihpos

Opérations ensemblistes

Opérations sur les langages

- Langage = ensemble (de mots)
- toutes les opérations ensemblistes
- Exemple : L_1 = {aa,aaa,aaaa} = { a^2, a^3, a^4 } et L_2 = {aa,aaaaa} = { a^2, a^5 } deux langages
 - $L_1 \cup L_2 = \{a^2, a^3, a^4, a^5\}$
 - $L_1 \cap L_2 = \{aa\}$
 - $\overline{L}_2 = \{ \epsilon, \alpha, \alpha^3, \alpha^4, \alpha^6, \alpha^7, ... \}$

Concaténation

Opérations sur les langages

■ L1 et L2 deux langages

 $L_1.L_2 = \{u.v: u \in L_1 \text{ et } v \in L_2\}$

• L_1 = {a,aa,aaa} L_2 = {0,00}

 L_1 . L_2 ={a0,a00,aa0,aa00,aaa0,aaa00}

• $L_1 = \Sigma^*$ pour $\Sigma = \{0,1\}, L_2 = \{0\}$

 L_1 . L_2 = Σ^* .{0}: mots binaires pairs

Opération * de Kleene

Solution idempotents: $(L^*)^*=L^*$ un langage, L^* = concaténation de mots de L $L^0 = \{\epsilon\}$, $L^1 = L$, $L^{i+1} = L^i$. L $\forall i \geq 0$ $L^* = \bigcup_{i \geq 0} L^i$, $L^* = \bigcup_{i \geq 1} L^i$ $L^* = \mathcal{L} = \{a,0\}$ $L^2 = \{aa,a0,0a,00\}$ $L^3 = \{aaa,a0,0a,a00,0aa,0a0,00a,000\}$ $L^* = \text{plus petit langage de } \Sigma^* \text{ clos pour la concaténation contenant } \epsilon \text{ et } L$. C est un sous-monoïde de Σ^* C = Opération idempotente: $(L^*)^* = L^*$

Langages rationnels

- Intérêt particulier pour la suite
- sous-ensemble de l'ensemble des langages
- définition inductive
- Notation simplifiée par expressions rationnelles (recherche sur le Web, etc...)

Définition inductive

- Base:
 - Ø est un langage rationnel
 - $\{\epsilon\}$ est un langage rationnel
 - $\forall a \in \Sigma$, $\{a\}$ est un langage rationnel
- Induction:
 - Si Ret 5 sont deux langages rationnels,

 $R \cup S$, R. S et R^*

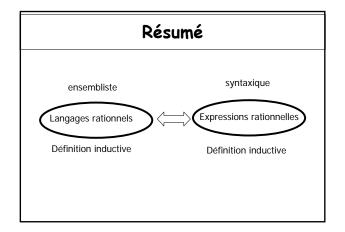
sont aussi rationnels

Expressions rationnelles (ER)

- Base:
 - Ø est une expression rationnelle (ER)
 - ε est une ER qui représente $\{\varepsilon\}$
 - $\forall a \in \Sigma$, a est un ER qui représente $\{a\}$ (le mot a)
- Induction : Si ret s sont des ER,
 - (r + s) est une ER qui représente $R \cup S$
 - (rs) est une ER qui représente R.S
 - (r*) est une ER qui représente R*

Exemples

- (a+b)* tous les mots avec des a et des b
- (a+b)*ab(a+b)*=(b*a*)*ab(a+b)*
- (b+ba)* mots sans facteur aa et qui ne commencent pas par un a
- (a+ε)(b+ba)* mots sans facteur aa



Relations (déjà vu en MD)

Relations sur les mots

- On s'intéresse aux couples de mots R={(a,0),(aa,00),(aaa,000),...} égalité des longueurs
- Propriétés d'une relation R
 - réflexivité pour tout a, aRa
 - · irréflexivité il n'existe pas de a, aRa
 - transitivité aRb et bRc implique aRc
 - symétrie aRb implique bRa
 - antisymétrie aRb implique non bRa

Relations particulières

- Équivalence
 - Réflexive
 - Transitive
 - Symétrique
- Ordre (préfixe propre)
 - réflexive
 - transitive | pré ordre
 - antisymétrique
- Ordre strict
 - Transitive
 - irréflexive
- Deux types d'ordres
 - Partiel : tous les éléments ne sont pas comparables
 - Total ou linéaire : tous les éléments sont comparables

Ordre préfixe

- $m \in \Sigma^*$ préfixe de $w \in \Sigma^*$
 - s'il existe $u \in \Sigma^*$ t.q. w = m.u
- Définition inductive:
 - Base : $\varepsilon <_{p} \varepsilon$
 - Induction : si $m <_{p} w$, alors $\forall x \in \Sigma$,
 - $x m <_n x w$ (ajout lettre à gauche)
 - $m <_p w x$ (ajout lettre à droite du plus grand)

Ordre préfixe

Ce n'est pas un ordre total dès que $|\Sigma| > 2$

- 10 et 11 sont incomparables
 - ■10 non préfixe de 11
 - •11 non préfixe de 10

L'ordre préfixe est un ordre partiel

Ordre lexicographique

- L'ordre du dictionnaire
- Définition inductive : (Σ,<)
 - Base :
 - (1) $\forall x \in \Sigma \cup \{\epsilon\}$, $\epsilon < |_{ex} x$
 - (2) $\forall x,y \in \Sigma$, x<y, x<_{lex}y
 - Induction : $\forall x \in \Sigma$, $\forall v, w \in \Sigma^*$,
 - (3) $v <_{lex} w \Rightarrow xv <_{lex} xw et v <_{lex} wx$
 - (4) $v<_{lex}w$ et $|w|<=|v| \Rightarrow vx<_{lex}w$

Ordre lexicographique

- Ordre total (tous éléments comparables)
 - ·Base :
 - •(1) $\forall x \in \Sigma \cup \{\epsilon\}, \epsilon <_{lex} x$
 - •(2) $\forall x,y \in \Sigma, x < y, x <_{lex} y$
 - •Induction: $\forall x \in \Sigma, \forall v, w \in \Sigma^*$,
 - •(3) $v <_{lex} w \Rightarrow x \ v <_{lex} x \ w \ et \ v <_{lex} w \ x$
 - .(4) v $<_{lex}$ w et $|w| <= |v| \Rightarrow v \times <_{lex} w$

Ordre lexicographique

- Par récurrence, on choisit (u,v) t.q. |u|+|v| est minimale
 - Base:
 - |u|+|v|=0 : ils sont comparables par règle 1
 - Si |u|=0, |v|<>0, par règle 1 et 3b ils sont comparables

Ordre lexicographique

- Étape inductive |u|>0 et |v|>0
 - •u(1)< v(1), par règle 2 et 4, u<_{lex} v(1) et par règle 3b, u<_{lex} v
 - u(1)= v(1), revient à comparer u' et v', u= u(1)u' et v= v(1)v' comparables par HR, u et v comparables règle 3a